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Abstract

Industrial Control Systems (ICS) remain vulnerable through attack vectors that exist

within programmable logic controllers (PLC). PLC emulators used as honeypots can

provide insight into these vulnerabilities. Honeypots can sometimes deter attackers from

real devices and log activity. A variety of PLC emulators exist, but require manual

configuration to change their PLC profile. This limits their flexibility for deployment. An

automated process for configuring PLC emulators can open the door for emulation of

many types of PLCs.

This study investigates the feasibility of creating such a process. The research creates

an automated process for configuring the web protocols of a Koyo DirectLogic PLC. The

configuration process is a software program that collects information about the PLC and

creates a behavior profile. A generic web server then references that profile in order to

respond properly to requests. To measure the ability of the process, the resulting emulator

is evaluated based on response accuracy and timing accuracy. In addition, the

configuration time of the process itself is measured. For the accuracy measurements a

workload of 1000 GET requests are sent to the index.html page of the PLC, and then to

the emulator. These requests are sent at two rates: Slow and PLC Break. The emulator

responses are then compared to those of the PLC baseline.

Results show that the process completes in 9.8 seconds, on average. The resulting

emulator responds with 97.79% accuracy across all trials. It responds 1.3 times faster than

the real PLC at the Slow response rate, and 1.4 times faster at the PLC Break rate. Results

indicate that the automated process is able to create an emulator with an accuracy that is

comparable to a manually configured emulator. This supports the hypothesis that creating

an automated process for configuring a PLC emulator with a high level of accuracy is

feasible.
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TOWARD AUTOMATING WEB PROTOCOL CONFIGURATION FOR A

PROGRAMMABLE LOGIC CONTROLLER EMULATOR

I. Introduction

1.1 Overview

Industrial control systems (ICSs) are a critical element of the nation’s infrastructure.

Ensuring that these systems are secure is important. industrial control systems (ICSs)

remain vulnerable to cyber-attacks, particularly due to unprotected programmable logic

controllers (PLCs). A PLC is a component of ICSs that controls many of the system’s

physical functions such as, “logic, sequencing timing, counting, and arithmetic in order to

control machines and processes”[Bol00]. A cyber-attack on a PLC can result in a

catastrophic failure of the system.

One way in which more can be learned about the vulnerabilities and exploits

associated with PLCs is through honeypot technology. Honeypots are “fake” versions of a

system intended to fool an attacker into thinking they are on an actual system. The

honeypots are then used to capture the attacker’s activity. Honeypots take two forms:

high-interaction and low-interaction. High-interaction honeypots are a real device, but

serve no purpose other than to distract attackers and log information [PrH08].

Low-interaction honeypots are emulators of the real system and have many benefits,

particularly in the case of PLC honeypots [PrH08]. They can be cost effective and readily

accessible to deploy than high-interaction honeypots. This research focuses on

low-interaction honeypots.

Researchers have used various methods to implement PLC honeypots. For example,

one project used two virtual machines and a real PLC. The first virtual machine logs the

1



attack information, while the second is a low-level honeypot emulating a PLC. The

honeypot attaches to a real PLC of the same type that the honeypot is emulating [Dig11].

Another project used Honeyd, a program that specializes in creating large networks of

honeypots [Pot05]. It includes a PLC package that offers a minimally functional emulator

[Hon12].

A more recent independent research project created an emulator of a single PLC

[Jar13]. The project focused on creating an emulator that was as accurate as possible. The

emulator that the project created was a manually-coded emulator of a Koyo DirectLogic

PLC [Koy13] [Jar13]. Because the emulator was configured manually, the process was

time consuming. Having the ability to automatically configure the emulator to act like an

arbitrary PLC device would create a more flexible tool for studying the PLC

vulnerabilities.

1.2 Goals and Hypothesis

This research theorizes that an emulator of a PLC can be created through an

automated process. The goal of this research is to create an emulator of the web protocols

of a PLC using an automated configuration process. The resulting

automatically-configured emulator (ACE) should respond with a goal of 100% accuracy to

common requests. Accuracy is based on how closely the ACE responses match those of

the PLC. Potentially, with continued research, a threshold level that consistently deceives

the attackers can be achieved. This experiment seeks to answer the question: Can the

process of configuring a PLC emulator be automated?

Automating this process lays a foundation for further honeypot research. With further

production, it may potentially allow researchers to quickly create emulators of multiple

honeypots. This could make it easier to deploy entire networks of honeypots into real

industrial networks, which could then be used to log activity in the system. Another

potential use is in academic settings. In order to educate people on the PLCs

2



vulnerabilities. Emulators can easily be created for entire classrooms. Automating the

process of configuring PLC web protocols is one step towards having complete emulators

of various types of PLC that are flexible and quickly created.

1.3 Scope and Limitations

The emulation target for this research are the HTTP protocols of a Koyo DirectLogic

405 PLC. The protocols are limited to HTTP, due to the open knowledge of their

implementation. In addition the ACE is tested only against the Koyo DirectLogic PLC.

This research chose to focus on this PLC due to its low cost, availability of

documentation, presence of known exploits, and its previous use in other research [Jar13].

That project created a manually-configured emulator of the Koyo DirectLogic PLC. The

emulator included the HAP, Modbus, and HTTP protocols of the PLC. To emulate the

HTTP protocols, the previous research used a Python-based HTTP web server. Because of

the availability of libraries and modules, the same Python web server was chosen for this

research. Emulating the same PLC with similar emulation software allows for some

comparison of an automatically-configured emulator to a manually-configured emulator.

Further details of the previous project are included in Section 2.4.2.

1.4 Approach

To create the configuration process, a set of rules and settings are compiled. These

settings include network interface options and web server response behavior. During the

configuration process, the configuration tool changes the values of settings based on

information it gathers in real time from the PLC. The result of the process is an ACE. The

usefulness of the configuration process is based on the accuracy of the emulator and the

time required to configure the emulator. Accuracy is measured by two metrics, using a

real PLC as a baseline. These levels are response accuracy and response time.
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1.5 Thesis Overview

Chapter 2 gives background information on industrial control systems, honeypots, and

related research. Chapter 3 describes the tools created for this study and how they are used

to create an automatically-configured emulator. The methodology used for this research is

provided in Chapter 4. Next, Chapter 5 discusses the results of the experiments. Finally,

Chapter 6 covers the research conclusions of this study and offers possible avenues for

future research.
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II. Literature Review

2.1 Introduction

This chapter introduces current research in industrial control systems (ICSs) and the

application of honeypots to ICS. Section 2.2 gives an overview of ICS, supervisory

control and data acquisition (SCADA) systems, and their associated vulnerabilities.

Section 2.3 introduces honeypots and explores various approaches available to implement

them. Section 2.4 outlines current research in ICS honeypots and identifies areas for

improvement. Finally, Section 2.5 summarizes the chapter.

2.2 Industrial Control Systems

ICSs control much of the machinery in the nation’s manufacturing and critical

infrastructure. This includes electrical systems, water, gas, transportation, and many other

industries [SJK13]. ICSs include multiple types of control systems. This research is

focused particularly on SCADA systems. Multiple devices make up industrial control

systems: the Control Server (called the master terminal unit in SCADA systems), the

remote terminal unit (RTU), intelligent electronic devices (IEDs), the Data Historian, the

Input/Output Server, the human machine interface (HMI) and programmable logic

controllers (PLCs) [SJK13]. PLCs are most relevant to this research.

2.2.1 Supervisory Control and Data Acquisition Systems.

One distinct characteristic of SCADA systems is their geographical disbursement

[SFS13]. Figure 2.1 illustrates the general structure for a SCADA system. In a SCADA

system, operators are able to perform real-time monitoring and control of industrial

automation systems and industrial processes from remote locations. Some of the

capabilities a SCADA system provides are:

• Access of sensor measurements of industrial processes

5



• Detect and correct process errors

• Measure trends over time

• Control geographically dispersed processes with a small, less specialized staff

Figure 2.1: Structure of a Supervisory Control and Data Acquisition System [SJK13]

One element of a SCADA system is the HMI, which allows operators to connect to

field devices and configure them. As shown in Figure 2.1 the HMI connects to field

devices through telephone and power lines, radio, microwaves, cellular communications

and satellite. In a SCADA system, these field devices can be an RTU, IED, or PLC. The

PLC/IED/RTU contains logic that monitors sensors and instructs machinery on what

actions to take. RTUs are field devices that often communicate information to the SCADA

system through wireless communications [SJK13]. Occasionally the term RTU and PLC

are used interchangeably, but this research considers them separate devices. An IED is a

“‘smart’ sensor/actuator[s] containing the intelligence required to acquire data,

communicate to other devices, and perform local processing and control” [SJK13]. PLCs
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are logic-based computers that perform a variety of controls. Further discussion of PLC

functionality is described in Section 2.2.2.

Proper functioning of the PLC/IED/RTU requires low-latency communication

between sensors, the Master Terminal Unit (MTU), and other PLCs [SJK13]. Any

malfunction in these devices can result in downtime, evaluation, repair and possible

destruction of the entire system. PLCs are vulnerable pieces of SCADA systems [Lev11].

This is a problem because PLCs control the major functions of an ICS.

Infrastructure and manufacturing began using industrial control systems before the era

of Internet connectivity. First generation ICS architecture designs did not include

interconnection with inter-networked computer systems. If remote connectivity was

required, it was primarily through a non-persistent dial-up telephone connection. As the

Internet grew in popularity, computer networking expanded using Local Area Networks

(LAN) and Wide Area Networks (WAN). Industrial sectors began to recognize the

potential benefits of using this type of networking for their control systems. The use of

these systems improved efficiencies and reduced the costs for ICS. This resulted in the

creation of SCADA systems [Lev11]. Because operators are now connecting to PLCs

through a TCP/IP network connection, PLCs may be exposed to the Internet and

susceptible to network-based intrusions.

2.2.2 Programmable Logic Controllers.

PLCs consist of four parts: an input/output device, central processing unit (CPU), a

programming device, and a power supply [Roh96]. The purpose of a PLC is to use

“programmable memory to store instructions and to implement functions such as logic,

sequencing timing, counting, and arithmetic in order to control machines and processes”

[Bol00]. PLCs have become more popular due to their many advantages. Some of these

advantages include cost effectiveness, flexibility, computational abilities, troubleshooting

aids, and component reliability [Jac08].
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The PLC uses ladder logic to control and monitor systems. Operators can configure

the ladder logic and other functions via the HMI. They can also connect the HMI to the

PLC in various ways, including “a dedicated platform in the control center, a laptop on a

wireless LAN, or a browser on any system connected to the Internet” [SJK13]. If an

attacker is able to connect to a PLC through any of these avenues, he/she can read and

potentially alter the logic program. Then the PLC would react incorrectly to sensor

information, thus disrupting the process under control and potentially causing physical

damage to equipment.

For example, in 2010 a computer worm called Stuxnet was discovered that targets

Siemens PLCs. It had infiltrated an Iranian uranium plant by looking for Internet-facing

computers using the Windows operating system that were also connected to ICS networks.

Once the worm found the computers that fit the profile, it used them to gain access to

PLCs. Attackers were able to reprogram PLCs on the Iranian ICS so that motors would

spin at speeds not in line with their specifications. Moreover, the attackers installed a

rootkit that prevented the true state of the motors from being reported to an operator

[FMC11]. The combination of these two attacks caused physical damage that resulted in a

great financial loss for the Iranian government.

Attacks like this on a nation’s critical infrastructure could cause financial damage and

potentially harm human life. One possible approach to learn how these types of

cyber-attacks are executed, their associated exploitable vulnerabilities, and how to defend

against them is through honeypots, which Section 2.3 describes.

2.2.3 Attack Vectors.

PLCs are a target for vulnerabilities in SCADA systems. Connectivity to TCP/IP

networks increases their exposure [Cpn11]. As of 2007, the most common attack vector is

through corporate networks and the Internet [BLK07]. SCADA systems are often

connected directly to corporate WANs. Communication between SCADA devices and
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other computers within the corporate network may go unchecked. Because of this, a

compromised computer sitting inside a corporate WAN bypasses all measures to protect

SCADA systems, and becomes an open door to the PLCs.

Some SCADA systems are actually connected directly to the Internet, which opens

them up to a wide array of attackers. This includes script kiddies (unskilled hackers) who

may not intentionally direct sophisticated attacks at SCADA systems, but do have the

ability to cause damage nonetheless [KLK09]. Additional attack vectors including dial-up

modems, wireless systems, and virtual private networks add to the complexity of entry

points, and make SCADA security a more difficult issue to address [BLK07]. The next

section describes one potential method in which researchers can begin to create more

efficient security solutions for SCADA systems.

2.3 Honeypots

2.3.1 Overview.

In general, a honeypot is a tool that can be used to log auditable information and often

serves as a decoy that draws in attackers away from real target systems. Two basic types

of honeypots exist, and each has their own merits. The first type, the high-interaction

honeypot, is an actual duplicate device of the same type of system that the honeypot is

meant to protect [PrH08]. The second type, which is discussed in greater detail and is the

focus of this research effort, is a low-interaction honeypot. This type of honeypot consists

of different hardware and software in order to emulate the device that the honeypot is

protecting [PrH08].

2.3.2 High-Interaction Honeypots.

A high-interaction honeypot is useful in that it is able to function exactly as the device

in question, because it employs the same hardware and software. An attacker interacting

with a high-interaction honeypot should have no reason to question that it is any different

from the actual targeted system.
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Because high-interaction honeypots are configured exactly as real systems on the

network, they are also vulnerable to the same attacks. Moreover, duplicate real devices are

typically more expensive and difficult to maintain than other options. In addition, many

companies are unwilling to share information about their systems [DHS13], because much

of it is proprietary [ByL04]. The next section describes an alternative honeypot solution

for SCADA research.

2.3.3 Low-Interaction Honeypots.

Low-interaction honeypots, on the other hand, are an emulation of the device. The

term emulation generally means “using some device or program in place of a different one

to achieve the same effect as using the original” [Sla03]. Emulation of software and

applications can be difficult due to their sometimes proprietary nature [HoW05].

Therefore, emulators may only mimic functionality with either entirely new systems, or

only pieces of the original system [Jul91]. Although emulators often provide only a subset

of services, when used as honeypots, they only need to provide enough interaction that an

attacker or tool accepts the emulator as the real device [PrH08].

The main purpose of a low-interaction honeypot is to serve as a facade of interaction,

and in most cases attackers can do little to no harm to them. In addition, low-interaction

honeypot solutions are often less expensive [PrH08], and more practical to operate and

configure than the devices they are designed to represent. Also, because there is no real

operating system, it is less likely that a low-interaction honeypot can be used to attack

other systems within the network [Spi03].

Despite their many advantages, low-interaction honeypots are much more difficult to

disguise. Because they are not the actual device, designers must incorporate features and

customize them to behave as closely as possible to the devices they are intended to mimic.

These steps include simulating network protocols, spoofing device specifications, and

more in depth, simulating the way that it would interact with other devices within its
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network [PrH08]. The next section discusses ways of implementing some of these

characteristics, and how each implementation could affect the ability to add additional

features.

2.4 Honeypot Research

2.4.1 Current Honeypot Activities.

A variety of projects exist that demonstrate a range of efforts to utilize honeypot

technology in industrial control systems. Interestingly, in some way, each of them is

deficient and leaves room for improving honeypot technology. The first project, called the

SCADA HoneyNet Project, attempted to accomplish many of the same goals that this

research effort outlines. The developers planned to use Honeyd (discussed in more detail

in Section 2.4.3) to emulate multiple PLCs. The developers were able to simulate a small

set of functionality, but development of the SCADA HoneyNet project stopped in 2005

[PoF05].

Another project, created by Digital Bond in 2008, took a different path. The project

incorporated many of the ideas in the SCADA HoneyNet project, and used two virtual

machines. The first virtual machine is a Honeywall VM that logs traffic information, while

the second is a low-level honeypot emulating a Modicon Quantum PLC [Dig11]. As

shown in Figure 2.2, the Honeywall logs and filters traffic as it comes in from the Internet.

The emulator virtual machine runs Honeyd to emulate the PLC services. Digital Bond

also extended the project to allow a real PLC to be attached to the system. In this case, the

PLC replaces the emulator VM [Dig11]. This project is one of the most developed so far,

but requires many pieces of hardware in order to operate it.

In 2011, a student at Iowa State created a Honeynet in an attempt to log attack

information on PLCs [Wad11]. The study utilized the Digital Bond Design. The Honeynet

was deployed on a network for approximately one month and monitored attacks. The
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Figure 2.2: Structure of the Digital Bond Honeynet [Dig11]

study did not result in any logged attacks. However, two critical pieces of the experiment

may mean that the network was not an accurate representation of a real PLC network.

First, the Honeynet was on the 129.186.255.255 subnet, which is identifiable as an Iowa

State domain from a Whois lookup. If an outsider were to see this, it would provide strong

evidence that the honeypot was not within a real industrial network. Second, the emulated

PLC was a Schneider Quantum Modicon which was the default configuration for the

Digital Bond honeypot. If an attacker visiting the network knew about the Digital Bond

experiment, seeing that the honeypot was a Modicon PLC might have deterred the attacker

from exploiting the device.
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Creating a PLC honeypot is difficult. Contributing to the difficulty is the large number

of PLC brands, models, and protocols that exist which are often proprietary. No one has

yet perfected a process, but research continues to combine and build upon techniques,

making fully functioning PLC honeypots more feasible. The next section outlines another

project that uses single board computers to implement a honeypot.

2.4.2 Independent Gumstix Research.

A researcher at the Air Force Institute of Technology developed a

manually-configured emulator (MCE) to resemble the behavior of a Koyo DirectLOGIC

405 PLC on a single board computer called a Gumstix [Gum12]. The researcher modified

the way in which the device (running Linux) accepts and responds to network queries

[Jar13].

When a query arrives at the device, it must go through a series of filters so the device

will be able to run the correct services and respond appropriately. Here, appropriately

means that the device will respond in the same way that the Koyo PLC is expected to

respond.

As shown in Figure 2.3, in the boxes labeled rules, the packets are filtered through IP

Tables rules to determine how the packet should be handled. The filter rejects any TCP

packet that arrives on a port other than port 80 or 502. Any incoming packets that appear

to be from a port scanner are dropped and a custom response packet is formed. When

generating a response, the firewall must insert information that the port scanner (e.g.,

Nmap) is expecting. The firewall makes a decision based on the technique Nmap uses to

interrogate the device during the scanning process [Nma12]. In this case, the packet will

contain information to make the Gumstix device look like a Koyo PLC. The response

packet then moves through the kernel and out through the outgoing IP Tables rules [Jar13].
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Figure 2.3: Gumstix Emulation Filter of Koyo DirectLOGIC 405 PLC [Jar13]
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If the query is a TCP packet sent to port 80 or 502, or a UDP packet sent to port

28784, then the kernel routes the packet to its corresponding, user-space process [Jar13].

To move the packets from kernel-space to user-space, the emulator uses NFQUEUE. This

is a kernel module that allows the packets to be sent to user-space processes through

queues. The specifications for the Koyo PLC determine the routing for accepted packets

[Jar13].

This process was demonstrated to work well, in that the Gumstix computer reacts to

various queries in the same manner that the Koyo PLC would. The Gumstix emulator is

currently limited to behave like a single PLC. It is not able to emulate other manufacturers

or models of PLCs, nor is it able to emulate more than a single instance of a PLC. The

former functionality is achievable, but currently this would require the developer to

hardcode the configuration for all of the PLC’s interactive query/response behavior. This

research incorporates parts of the Gumstix MCE design into the creation of an ACE.

2.4.3 Honeyd.

In 2003, Niels Provos began a project called Honeyd. The project was an effort to

create a framework for the development of low-interaction honeypots, with a focus on

emulating multiple honeypots on a single computer [Hon12]. In contrast to the Gumstix

architecture, Honeyd runs with root privileges, eliminating the transition from the kernel

to user mode and back to the kernel [PrH08]. In addition, Honeyd has a feature that allows

it to route traffic to a range of IP addresses, as specified by the developer [PrH08].

Figure 2.4 illustrates how network traffic flows directly to Honeyd. If the developer

prefers to emulate multiple devices, then he can allocate a set of IP addresses to Honeyd

[PrH08]. Honeyd will then route traffic to the appropriate honeypot. Additionally, the

developer has the flexibility to configure each honeypot to emulate a variety of devices.

When the packet arrives at the dispatcher, Honeyd performs a series of checks, similar to

the Gumstix architecture, that allows Honeyd to respond to the query properly and
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perform the correct services. Honeyd refers to the specifications of how a honeypot should

respond as the personality of the honeypot. After Honeyd executes the correct services,

any packet that requires a response, will go through the routing process and then to the

personality engine. The personality engine then modifies the response to fit the personality

of the honeypot that received the query [PrH08].

Figure 2.4: Honeyd Architecture [PrH08]

The range of functionality that Honeyd offers makes it an attractive option for

emulating multiple PLCs, but it has drawbacks that the Gumstix architecture does not.

First, Honeyd’s popularity opens it to potential fingerprinting. Oberheide and Kair

describe two methods to detect Honeyd [ObK06]. The first method is through default
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response messages. If these messages were left as the default, they provide an effective

method to determine they are interacting with a honeypot. Second, there is an error in the

way that Honeyd handles fragmented packets. When fragmented packets are sent to

Honeyd, the protocol is considered incorrect and Honeyd will improperly respond to the

packets with a SYN/ACK [ObK06]. Both of these issues can be corrected, but are

considered added complexity when considering Honeyd for research.

2.5 Summary

This chapter discusses SCADA systems and why vulnerabilities exist in them. It, also,

describes honeypots which could be used to learn more about how these vulnerabilities are

being exploited. The chapter then provides an overview of various methods researchers

used to develop honeypots for Industrial Control Systems.
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III. Emulation Configuration Tool

This chapter describes the software that allows for the creation of a PLC web interface

emulator. The emulation configuration tool (ECT) includes two pieces: the configuration

process and the automatically-configured emulator (ACE). The configuration process

works by using a set of configuration programs to gather information and create a profile.

The emulator uses that information to run a web server. As shown in Figure 3.1 the PLC

connects directly to the configuration machine through an Ethernet cable in order to

communicate.

Figure 3.1: Configuration Setup

3.1 Design

The design of the ECT includes several considerations: speed, minimal user

interaction, and accuracy. The purpose of the ECT is to automate the configuration

process for PLC honeypots. Therefore, the ECT must be reasonably fast and require little

human interaction, while maintaining an acceptable level of accuracy.
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Based on the expected applications of this process, a maximum configuration time of

five minutes is the threshold for this research. For instance, this tool could be used in an

educational environment. Five minutes per emulator would be a reasonable time frame to

set up a lab environment. Because of the speed and cost, each student could have an

emulator to interact with. If the ECT is used for deploying emulators in an industrial

environment, five minutes is also acceptable. It is expected that only a few PLCs would

need to be created for use as honeypots within a single network. In addition the emulators

would likely need to be created only once. A configuration time of five minutes would not

keep operators from other work for an unacceptable amount of time.

In addition to speed, minimal user interaction is an important factor in the design of

the ECT. The ECT requires few instances in which a human must interact and those user

interactions would need little specialized skill. Whether this tool is used in an educational

environment or being deployed in an industrial network, the individual setting up the

emulator does not need to be an expert in PLC design and protocols. The commands

needed to run the emulator should only require general technical knowledge. The ideal

scenario for this research is a single script to run the entire process.

Finally, the ECT must be accurate. In order to create a profile for the responses of the

PLC, the ECT collects information from three vectors: (1) web page collection, (2)

mirroring of Hypertext Transfer Protocol (HTTP) response headers, and (3) configuration

of network settings through pcap parsing. The combination of these methods increases the

accuracy across multiple levels.

3.2 Configuration Process

To gather the necessary information, the configuration tool runs a variety of scripts

which send and receive web traffic. The configuration process utilizes four creation files

which probe the PLC and create the profile. These files are auto-wget.py, inputFinder.py,

parse pcap.py, and config emulator.sh. A description of the configuration steps is shown
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in Figure 3.2. The steps of this process are outlined below. In parentheses, following each

step, is the name of any scripts or files associated with that step.

1. Gather all of the web pages available on the interface. This step uses a third party

tool called wget which harvests all of the pages and then saves them in a local

directory. (auto-wget.py)

2. Send HTTP GET request to each page in the directory from step one. In addition,

save response headers to a dictionary. (inputFinder.py, variableFile.py)

3. Record traffic from step two using tcpdump and save traffic capture to a pcap file.

4. Use the pcap file to gather network configuration information (parse pcap.py)

5. Echo network configuration values to associated files within the Linux file system.

(config emulator.sh)

3.2.1 auto-wget.py.

This file runs the wget utility and the inputFinder.py program which is outlined in

Figure 3.3. When auto-wget.py is executed, the operator must input the IP address of the

PLC and any login credentials required to access pages in the web interface. It then runs

the wget command wget -r -l 15 -e [optional credentials]

robots=off [IP address]. The results of the wget command are a collection of

all of the accessible pages in the web interface. Those pages are then placed in a folder.

The label for this folder is the IP address of the PLC. In addition, auto-wget.py initializes

the inputFinder.py program.

Before running auto-wget.py the user must start tcpdump using the command $sudo

tcpdump -i eth0 -w settings.pcap. This records the TCP handshake packets

that contain network settings required to configure the emulator VM. Once auto-wget.py
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Figure 3.2: Configuration Process

has completed execution, the tcpdump script is ended by the user. Further discussion of

how settings.pcap is used is discussed in Section 3.2.3.

3.2.2 inputFinder.py.

For the web server to properly handle requests for pages, it has to know how the PLC

handles those requests. These requests include the headers of the response packets. The

file that gathers this information is inputFinder.py. This program records responses from

GET requests. As shown in Figure 3.4, a request is sent to the web page. The program

iterates through each section of the response header. It builds a string from these sections.

To send the requests it uses httplib, a built-in Python library. The HTTPConnect module

allows the program to send requests to the PLC, record the responses, and retrieve header

information.
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Figure 3.3: auto-wget Script

The headers from the responses are stored in a Python dictionary along with their

associated web page. This dictionary is stored in the file variableFile.py which is

described in Section 3.3.1. The web server portion of the emulator uses this dictionary to

formulate its own responses. The key in the response dictionary is the file name of the

web page. The value is the response header string that corresponds to the web page.

Figure 3.5 shows a section of the response dictionary.
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Figure 3.4: Sending GET Requests to Each Page and Recording Responses in inputFinder

Figure 3.5: Response Dictionary in variableFile.py

3.2.3 parse pcap.py and config emulator.sh.

The parse pcap.py script, combined with the config emulator.py program,

accomplishes the next step of configuration. This script collects information from the

settings.pcap file created during the interaction between the PLC and the auto-wget.py
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script. Figure 3.6 shows that an initial dictionary is created containing the network settings

to be changed. This includes the maximum transmission unit (MTU), TCP Window

Scaling, TCP Selective Acknowledgment, TCP Timestamp, and time to live (TTL).

Figure 3.6: Locating SYN/ACK Packet with parse pcap.py

The parse pcap.py uses a Python library called dpkt to parse the pcap file. It

specifically looks for a packet from the PLC with both the SYN and ACK flags set. This

packet contains information about the network configuration of the PLC.

As Figure 3.7 shows, parse pcap.py uses dpkt, again, to search for the options listed

above and the values associated with them. The parse pcap.py program then runs the

config emulator.sh bash script, with the network options as arguments to the script.

The config emulator.sh script echoes the values to the appropriate files. Figure 3.8

shows that the current options being changed are in the ipv4 folder within Linux. Note

that the ICMP Rate Limit is also a value being changed. The dpkt library does not have

the functionality to retrieve this value. For this study, the rate limit is turned off. Pilot

studies show that this value is turned off in other PLCs, so this is considered acceptable. A
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Figure 3.7: Locating Network Options in parse pcap.py

full list of the values changed by config emulator.sh and their descriptions is included in

Appendix C.

Figure 3.8: config emulator Script
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3.3 Emulator

Once the creation programs have completed, the emulator is ready to be started. The

emulator is made up of a python web server, the web page files, and a file that contains

dictionaries for the web server to refer to when formulating a response. The web sever is

contained in the file webserver.py. The web page files are those gathered in the

inputFinder program. Finally, the file that holds the response dictionary is variableFile.py.

3.3.1 webserver.py and variableFile.py.

The emulator uses a Python-based HTTP server to serve responses to the client

[Pyt14]. This server is contained in webserver.py. The web server accepts GET requests

from a client and serves responses based on the values within variableFile.py. The

variableFile.py file contains a response dictionary that holds a mapping of the page names

to the response given by the PLC when a GET request is sent to that page. Figure 3.9

shows the section of the web server code that handles GET requests. The GET request

handler uses the file name as the key to search for the appropriate header in the response

dictionary in variableFile.py. The header value that is returned is combined with the

contents of the web page file. The resulting string is placed in a packet and sent as the

response.

In pilot studies, a difference in response times between the PLC and the ACE was

discovered. The average delay was 1.5 ms. Therefore, a static artificial delay of 1.5 ms is

added to the request handler of the ACE web server for each response. This added delay is

not as accurate as it could be. A more accurate delay would potentially be variable, to

match the variability in the PLC responses. In addition the delay could also be based on

the times of the responses gathered during the configuration process. This would allow for

a delay that is tailored to the network speeds and the specific PLC. The response accuracy

of the ACE with the delay is analyzed in addition to the response accuracy without the

delay.
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Figure 3.9: Method for Responding to GET Requests Within webserver.py

3.4 Summary

The ECT combines speed, minimal interaction, extensibility and accuracy to create a

useful configuration tool. It uses information gathered from wget, behavior of responses to

GET requests, and system configuration options gathered from packet headers. This

process creates a profile that fits the behavior of the PLC. In addition, more rules could be

added if analysis shows that those rules would increase the capabilities of the ECT or the

accuracy of the ACE.
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IV. Methodology

4.1 Problem Definition

4.1.1 Goals and Hypothesis.

The goal of this research is to create a process for automatically configuring a PLC

emulator. Some PLC emulators in existence are manually configured, which is a lengthy

and specialized process. In addition, the resulting emulator is configured to a single type

of PLC. An automated process would decrease the configuration time and allow for the

configuration of an emulator that is able to mimic any type of PLC. In addition, although

the process would be consistent over multiple iterations, the lack of human involvement

can lead to a possible loss of accuracy.

It is hypothesized that an PLC emulator can be created through an automated process.

Because of the large number of PLC types and the variety of protocols and

implementations PLCs use, this research is focused on automating the process for

configuring the emulator at the web-protocol level. This includes emulating open

protocols used to control PLCs through a web interface. How well the process works is

determined by the accuracy of the emulator and the efficiency of the process. Questions

that this research addresses include:

• Can the process of configuring a PLC emulator be automated?

• Can the process be a step towards creating emulators using various types of PLC

devices?

4.1.2 Approach.

To create a PLC emulator automatically, the configuration tool creates a profile by

interacting with the PLC and collecting information about its behavior. This behavior
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includes the way in which the PLC responds to HTTP GET requests, and the network

configuration of the PLC. The details of this process are outlined in Chapter 3.

Because many of the protocols associated with PLCs are proprietary, this research

focuses only on the open TCP/IP protocols. Specifically the research emulates a web

server that accepts traffic on port 80. In order to create a more complete emulation of a

PLC, all protocols would need to be emulated. Emulating the TCP/IP protocols is a first

step toward a full emulator.

4.2 System Boundaries

The system under test (SUT), shown in Figure 4.1, is the ECT. The components of the

system are the configuration process and the resulting automatically-configured

emulator (ACE). The configuration process is the component under test (CUT). The

workload into the system are GET requests sent to the ACE. The ACE uses the response

accuracy and response time metrics to evaluate its performance. The configuration process

is evaluated based on configuration time.

4.3 System Services

The service ECT provides is the creation of a PLC emulator. There are three possible

outcomes for this service: creation of an accurate emulator, creation of an inaccurate

emulator, and no creation of an emulator. When the tool succeeds, an emulator is created

that meets the threshold for acceptable accuracy. The measurements for accuracy are

described in Section 4.5. If an emulator is created, but does not meet those standards, it is

considered a failure. This outcome can occur either because outside factors affected the

ability of the configuration process to complete successfully, or because the algorithm for

creating the emulator is flawed. If no emulator is created, this is also a failure. This could

occur if the ECT does not include enough information to create a functional emulator. It
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Figure 4.1: Emulation Configuration Tool

may also fail if the computing factors, such as speed, CPU, hard drive and memory, do not

allow the ECT to complete execution.

4.4 Workload

The workload delivered to the system is HTTP GET requests sent to the device. For

this research, this is a request to the index.html page of the PLC web server. This page is

chosen for its size and complexity. The tool used to generate this workload is a script

called htmlget mt. It is a previously validated custom tool used in the Gumstix research

[Jar13]. The program works by sending GET requests to the index.html of the device.

Each request is sent on a different port. This feature allows packet streams to be separated

for analysis.

The workload generator sends 200 GET requests to the page during each experiment.

A set of 200 requests is selected because the htmlget mt program produces a segmentation

fault around 300 requests; therefore, a set of 200 requests is chosen to consistently send
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successful requests to the devices. Experiments are repeated 5 times for each combination

of workload and system factors. This means that a total of 1000 requests are sent for each

experiment, which allows for a small confidence interval for the mean.

Before any trials are run, the workload virtual machine is brought to a point in which

the CPU usage is at a steady state, and there is no network usage. Between each trial, the

Linux System Monitor program is used to determine a time in which the CPU usage has

leveled out again and network usage has returned to zero. In addition, a wait time of one

minute is placed between each experimental trial. This wait time ensures that the CPU

usage and network activity are at a steady state.

4.4.1 Request Frequency.

The request frequency is the rate at which requests are sent to the CUT. Any aspect in

which the ACE behavior diverges from that of the real device is an opportunity for

fingerprinting. Therefore, the frequency is varied to determine response accuracy of the

ACE at different levels.

In this research, there are two levels for the request frequency. The first is the PLC

Break; it is the level at which the PLC can no longer send responses fast enough. The

second level is a slow frequency at which both devices are able to easily handle requests.

A breaking point for the PLC was established in the MCE Gumstix study [Jar13]. Due to

changes in the experiment environment, these breaking points were reevaluated for this

study.

To find the breaking point of the PLC, requests were sent to the PLC at different

frequencies until the PLC cannot respond to the requests. The workload generator,

htmlget mt, places a built-in, changeable delay between requests. In pilot studies, requests

were sent with varying delays. Using a binary search method, a range of delays were

determined to be near the PLC breaking point. This range was found to be 38 milliseconds

(26.32 requests/second) to 45 milliseconds (22.22 requests/second).
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To determine the delay used as the PLC Break level for this experiment, requests are

sent at set increments. The point at which the PLC responds to at least 99% of the requests

is considered the PLC Break level. This means that the PLC is just beginning to fail to

respond to requests. For every trial, 200 requests are sent to the device, and trials are

repeated five times for each frequency. First, the delay is increased from 38 milliseconds

to 45 milliseconds in increments of one millisecond. At a delay of 42 milliseconds, the

average response success is 94.7%. To narrow in on a more accurate breaking point, sets

of requests are sent at 42.5, 43.5, and 44.5 milliseconds. At a delay of 44.5 seconds (22.47

requests/second), the PLC successfully responds to an average of 99.4% of the requests.

This is the PLC Break level. Figure 4.2 shows the percentages of successful responses at

each level. The figure shows the response percentages for each trial. The line represents

the average response percentage for each frequency. The resulting breaking point is shown

in Table 4.1.

Table 4.1: Request Frequency. This is the rate at which requests are sent to the device.

Frequency Label Frequency (requests/second)

Slow 10

PLC Break 22.47

4.5 Performance Metrics

To measure the performance of the configuration tool, the system is evaluated in terms

of both the configuration process and the final ACE. The metric for the process is the time

it takes to create the emulator. The time it takes to create the ACE is a combined execution

time of the configuration scripts. The time for the first script begins with the execution of

the wget command in the auto-wget.py script, and ends when the inputFinder.py ends
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Figure 4.2: Successful Response Rate at Varying Frequencies.

execution. The time of the second script starts when parse pcap.py opens the pcap file for

reading. The second time ends when the config emulator.sh script completes execution. If

the configurator exits without creating an emulator, the time that the process exited is

noted, but marked as a failure.

The ECT is evaluated, both on the performance of the configuration process, and the

accuracy of the resulting emulator. Emulator accuracy is measured in terms of packet

response time accuracy and the response accuracy. To maintain consistency in evaluation

techniques, these metrics are based on those used in preceding research [Jar13].

To evaluate the response accuracy and the response time accuracy metrics, a set of

GET requests are first sent to the index.html page of the real PLC at both the Slow and

PLC Break frequencies. The responses to these GET requests serve as a baseline for

measuring the performance of the ACE. Next, the same requests are sent to the emulator
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at both frequencies. A set of 200 requests are sent in each trial. Those trials are repeated

five times for a total of 1000 requests to each device. Trials are performed at least 60

seconds apart to ensure no residual network traffic or CPU usage affects the next trial. In

addition, the network traffic and CPU usage are monitored in Linux’s System Monitor

program. Trials are not run until the CPU usage has returned to the same level as it was

before any trials are run and no network activity is present.

4.5.1 Response Accuracy.

Response accuracy is based on how similar the ACE’s response is to that of the real

PLC. This is measured in the number of bytes in the emulator’s response that are the same

as those in the response of the real PLC.

Using Wireshark, the traffic of each conversation is recorded into two separate pcap

files. The first pcap file is a recording of the response traffic from the PLC to the workload

generator. The second pcap file is a recording of the response traffic from the ACE to the

workload generator. A program called pcap accuracy parse is used to compare the pcap

files. This program was created and validated in the Gumstix MCE research [Jar13]. The

pcap files are compared by separating the traffic into packet types. All response packets of

one type from the emulator traffic are compared to the corresponding packets from the

PLC traffic. This is done by comparing the packet bytes. For this research, the packets are

separated into eight packet types. This is because the Koyo PLC responds to the

index.html page in eight packets. This is based on the size of the page and the maximum

segment size (MSS) used by the Koyo PLC. In future research, experiments may need to

use a different number of packets to recreate an accurate comparison. A visualization of

this process is shown in Figure 4.3 [Jar13]. Certain packet bytes will always be different

(e.g., sequence number), and are not included in the comparison. These bytes are

considered non-deterministic.
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Figure 4.3: Method for Comparing Packet Bytes. [Jar13]

4.5.2 Response Time Accuracy.

The second part of accuracy measurement is response time accuracy. For this

experiment, response time “starts with the first packet of the TCP handshake [from the

workload generator to the emulator], and concludes with the final TCP ACK packet from

the [emulator]” [Jar13]. As with the response byte accuracy measurement, a baseline for

an expected average response time is created by sending requests to the PLC. A program

called web time parse is used to find the response time for each request. This program is

also created and validated in the Gumstix MCE research [Jar13]. When the program sends

requests to the device, it sends each request on a different outgoing port. The program is

written in C, and uses the sockaddr in structure for port handling. Because the workload
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generator sent each request on a different port, web time parse is able to separate each

stream based on the destination port number of the response packets. It then calculates the

difference in time between the start of one stream and the start of the next stream. The

response times from all 1000 requests are averaged. This is the average response time for

the device. The average response time of the ACE is compared to the average time of the

PLC.

4.5.3 Configuration Time.

The configuration time is defined as the total execution time of the configuration

scripts. Because of the way the scripts are run, this time is calculated from the sum of the

first script’s run time and that of the second script. To calculate the runtime of each script

the program uses Python’s built in time module. For each script, a timer begins before the

execution of any functions or calculations. The timer stops when no more calculations are

running. For some scripts, user input is required at the start of the program. The timer

starts after all user input is accepted. This is because that time is dependent on the user,

rather than the efficiency of the code. In addition, no configuration functionality begins

until all user input has been accepted.

The configuration time is measured for 25 separate instances. A sample of 25 is based

on the Central Limit Theorem. A sample of this size is usually sufficient for a normal

approximation [Han04]. Before each measurement, the ACE virtual machine is reverted to

a snapshot. The snapshot does not contain any of the emulator files that result from the

configuration. Most of the scripts create files and folders during the configuration process.

An initial presence of these files would affect the time it takes to configure the emulator.

Reverting to a snapshot eliminates the possibility of this effect.

4.6 System Parameters and Factors

Parameters that affect system performance include computing parameters and device

type. Computing parameters the research considers include memory, CPU speed, the
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programming language, and the operating system of the PC. The device type is the device

being evaluated: the real PLC or the ACE.

Computing Parameters. Various aspects of the computing environment can affect

the speed of the configuration tool and the response of the emulator. The CPU speed and

available memory have a direct impact on the time it takes for the configurator to run. The

programming language can affect the runtime of the configurator. The operating system

can also cause a certain amount of overhead. For this research, the configuration tool is

written in Python. For this experiment the workload generator and the ACE are on

separate Ubuntu 13.10 virtual machines with 20GB of disk space and 1GB of memory,

and an Intel Core i7-2760QM 2.4GHz processor.

Device Type. The device type parameter is the device being evaluated. The type is

either the real PLC or ACE. In this study, the PLC is a Koyo DirectLogic DL405 version

4.0.1.1735. The emulator consists of a script that is emulating the web server of the Koyo

PLC and additional files used to reference response behavior.

4.7 Experimental Setup

To run the experiment, a workload generator is connected to either the PLC or the

emulator. For this experiment the workload generator and the ACE run on separate

Ubuntu 13.10 VMWare virtual machines, each with 20GB of disk space, and 1GB of

memory. Both of these virtual machines are running on the same host with an Intel Core

i7-2760QM 2.4GHz processor. The PLC is a Koyo DirectLogic DL405 version

4.0.1.1735. The workload generator uses the program htmlget mt to generate and send

GET requests to the main page of the emulator and the PLC. While sending the workload,

the generator system is, also, running Wireshark to collect the traffic between the

workload generator and the device being evaluated. A pictorial description of this setup is

shown in Figure 4.4. All three machines are on the same isolated subnet. The machine
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running the virtual machines is connected to the PLC by a direct Ethernet connection.

Both of the virtual machines’ network adapters are set to the VMnet0 setting in VMWare.

Figure 4.4: Experimental Setup

4.8 Evaluation Technique

The technique for evaluating the configuration process is a direct measurement of the

configuration tool. The evaluation uses a Koyo DirectLogic 405 PLC [Koy13] as the

baseline for measurement. To measure the accuracy of the emulator, this research uses

measurement techniques from its preceding study [Jar13]. Because this research focuses

on emulating web protocols, accuracy is measured in terms of packet byte accuracy and

timing accuracy. The accuracy of the packets is based on the number of bytes that match

the bytes in packets sent by the baseline device. The timing accuracy consists of the time

that the emulator takes to respond after receiving a query. Using these measurements of

accuracy, this study sends queries to the baseline devices and the emulator, and compares

responses of each baseline with those from the emulator.
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The configuration process is evaluated on configuration time. There is no current

baseline for this metric. The configuration time is measured during 25 configuration

replications. The average of these times will set a baseline for the configuration time of an

ACE.

4.9 Experimental Design

The research has one system factor, with two levels, and one workload parameter with

two levels. Running 5 replications means that the research runs 40 tests. The packets sent

by the emulator should be 100% accurate in order to avoid the possibility of

fingerprinting. Due to the high number of repetitions allowed by this research, a 95%

confidence level for the difference in means is a goal for this study.

4.10 Methodology Summary

This research creates a tool for automatically configuring an device to emulate web

protocol behavior of a Koyo DirectLogic PLC. It does so by probing the programmable

logic controller (PLC) and analyzing traffic from the PLC communication, then saving

necessary information into a directory, which is discussed in Section 3.2. The emulator

uses that database to create a behavior profile for that particular PLC. The service that this

tool provides is the generation of an emulator that mimics known web protocols for a

PLC. How well the configuration tool performs, in creating the emulator, is based on the

accuracy of the responses, the time it takes to respond, and the time it takes for the

configuration process to complete.

To evaluate the automatically-configured emulator (ACE), it is initially tested against

an actual Koyo DirectLogic PLC. If the emulator can achieve accuracy that is within a

95% confidence level, with respect to the PLC, then the ACE would be considered

sufficiently accurate at evaluating the PLC.
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V. Results and Analysis

This chapter discusses the results from the measurements of the emulation

configuration tool (ECT). The ECT is analyzed based on the three metrics: response

accuracy, timing accuracy, and configuration time.

5.1 Response Accuracy

Measurements for response accuracy are taken across all 1000 trials, but there is no

change in response accuracy between trials. For both the PLC and the ACE, a total of

2444 bytes are sent during a response stream. These 2444 bytes are from the eight packets

sent in response to the GET request. The eight packets are shown in Figure 5.1. The first

packet is part of the TCP handshake. The second packet acknowledges the GET request

was received by the device. Packets three through six contain the HTML data from the

index.html web page. Packet seven is the HTTP OK message, telling the workload

generator that the request was successful. The final packet is part of the tear-down

sequence. The sum of the bytes in each packet make up the 2444 bytes in the response.

Figure 5.1: Eight Response Packet Types

Of the 2444 bytes, only 2310 are included in the analysis of the response accuracy.

The other 134 bytes are part of the non-deterministic bytes. Recall, that the

non-deterministic bytes have unpredictable values and are not included in the accuracy
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analysis. As shown in Table 5.1, for all 1000 trials at both the Slow and PLC Break

frequencies, 2259 out of 2310 deterministic bytes (97.79%) are correct. Because the byte

accuracy remains the same across all trials, there is no deviation and therefore no

confidence intervals.

Table 5.1: Response Accuracy of the ACE

Frequency Total Responses
Number of

Correct Bytes
Percent Correct

Slow 1000/1000 2259/2310 97.79%

PLC Break 981/1000 2259/2310 97.79%

The byte values of the PLC’s reponse packets serve as a baseline for evaluating the

accuracy of the ACE responses. A total of 51 bytes in the emulator’s response packets are

incorrect out of the 2310 bytes of the response. Table 5.2 shows all of the incorrect bytes,

and which packet types they appear in. For instance, bytes 0x07-0x0a appear incorrectly

in all eight packet types, while byte 0x47 is only incorrect in packet type three. Column

three shows the total incorrect bytes that each set accounts for.

Four incorrect bytes appear in all eight packet types. These are bytes 0x07, 0x08,

0x09, and 0x0a. This accounts for 32 incorrect bytes of the total 2310 bytes. These bytes

specify the middle four bytes of the six byte emulator media access control (MAC)

address. The first byte of the MAC address is correct for the ACE. The last byte is part of

the non-deterministic bytes, and not considered. Figure 5.2 shows the format of the

Ethernet II header [Cis12]. The highlighted section is the six byte source MAC address.
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Table 5.2: Incorrect Bytes in the ACE Response Packets

Byte(s) Description Packet Type Location Total Incorrect Bytes

0x07, 0x08, 0x09, 0x0a
MAC

Address
1,2,3,4,5,6,7,8 32

0x12, 0x13 IP ID 2,3,4,5,6,7,8 14

0x2f
TCP PSH

Flag
4,5 2

0x30, 0x31 Window Size 8 2

0x47
Letter c in

content-type
3 1

Figure 5.2: Format of the Ethernet II Header [Cis12]

Figure 5.3 shows the difference of the MAC address bytes in Wireshark. The first

three bytes of the MAC address make up the organizationally unique identifier (OUI),

which identifies the device vendor. The top section shows the Ethernet header of the PLC,

while the bottom section shows the ACE header. As shown in the source section of Figure

5.3, Wireshark identifies the PLC as a Host Engineering device. Host Engineering is the

vendor associated with Koyo PLCs. Because the MAC address of the ACE is not altered,

Wireshark still identifies it as a VMWare device. Changing at least the OUI bytes to match

those of the PLC would give the impression that the device is authentic.
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Figure 5.3: Difference in MAC Address Bytes

PLCs are commonly placed behind a router [BLK07]. This configuration could

potentially mask the MAC address of the emulator. In the future, if a situation were

identified that an attacker is able to get into the same subnet that the ACE honeypot is on,

adding functionality to change these bytes would be possible. It would require adding an

additional rule to the config emulator.sh file.

The second set of incorrect bytes are bytes 0x12 and 0x13. These are the IP

identification (IP ID) number of the packet. The IP ID is used to label datagrams.

Therefore, if the datagram is fragmented, each fragment will have the same IP ID. Then

the fragments can be reassembled [KuR13]. Figure 5.4 shows the formats of the IP and

TCP headers [Hus04]. The first highlighted section shows the IP ID field.

In all packets from the PLC, the IP ID is 0x0000. The IP ID of the first packet type

from the ACE is also 0x0000. After the first packet, though, the ACE sets the IP ID and

increments it by one for each subsequent packet type. The implementation of the IP ID is
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different across operating systems, so a deviation from the PLC is a potential area for

fingerprinting [Ark02].

Figure 5.4: Format of the IP and TCP Headers [Hus04]

The next byte difference is byte 0x2f, which is in packet types four and five. The 0x2f

byte is part of the eight bits that include the six TCP flags. The second highlighted section

of Figure 5.4 shows the location of the PSH flag. In the PLC responses, the value of 0x2f

byte is 0x18. The 0x2f byte in the ACE response has a value of 0x10. This difference

comes from the TCP PSH flag bit, which is set for the PLC, but not set for the ACE. The

PSH Flag bit, “indicates that the receiver should pass the data to the upper layer

immediately” [KuR13].

The next two incorrect bytes are 0x30 and 0x31. The location of these bytes are

displayed in the last higlighted field of Figure 5.4. These two bytes make up the TCP

window size (RFC 1323) [JBB92]. The bytes are only incorrect in packet type eight. For

the PLC the values are 0x07ff, or 2047 decimal. In the ACE the values are 0x0800, or
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2048 decimal. For all other packet types, the window size for both the PLC and the ACE,

is 2048 decimal. Both the PSH flag and window size are handled in kernel-space [Ste93].

Because the configuration process currently runs in user-space, changing this byte is out

of the scope of this study.

The last incorrect byte appears in packet type three. This is byte 0x47, which is the

letter c in the phrase content-type. This is a simple difference that arises from Python’s

httplib library. When forming the response dictionary, the ECT uses the HTTPConnection

object from httplib to send GET requests from the emulator and record responses. The

content-type section of the response header is parsed using the getheaders function of the

HTTPConnection response object. The return value of this function contains header

values as string objects. The httplib appears to disregard capitalization for the header

strings. The getheaders function is the method for discovering the value of the header

fields. The configuration process has no prior knowledge of whether or not the field values

are capitalized. If future research determines that the c is capitalized for all PLC brands,

then this can be hard-coded into the configuration process. Figure 5.5 shows the difference

between the PLC and the ACE for byte 0x47.

Figure 5.5: Comparison of content-type Phrase
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The RFC states that the field names of the HTTP headers are case-insensitive (RFC

2616) [Fie99]. In addition, the byte difference is syntactical rather than semantical, so the

difference is not critical. A skilled user may take note of the difference, but the change

would not likely throw a red flag.

In the Gumstix manually-configured emulator (MCE) research, the byte accuracy of

the emulator was 99.79% [Jar13]. An accuracy percentage, closer to that level, would have

further shown the validity of automatic configuration. Some of the incorrect bytes in the

ACE are the same incorrect bytes in the MCE. Specifically, this includes bytes 0x2f, 0x30,

and 0x31, which were incorrect in the same packet types as the MCE. Thus, the largest

cause for the deviation in the ACE accuracy percentage are the four MAC address bytes.

5.2 Timing Accuracy

Table 5.3 shows a summary of the response times for each device at the different

frequency levels. The mean response times across 1000 trials are shown, along with the

standard deviation and 95% confidence intervals for each. For the PLC Break level, two

summaries are shown for the PLC. The first shows the summary of all data collected. The

original data show that five outliers with p-values of less than 1x10−20 exist. Because the

outliers were so extreme, they were removed to more easily show the relationship between

the PLC and the ACE response times. The summary of that data is shown in the last line

of Table 5.3, labeled PLC (N.O.).

5.2.1 Slow.

The average response times from the Slow level, shows the behavior of each device at

a request frequency that both the PLC and the ACE can easily handle. From Table 5.3, the

average response time of ACE is 1.37 times faster than that of the PLC. Although the

difference is not huge, the 95% confidence intervals do not overlap. In addition, a
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Table 5.3: Summary of Device Response Times

Frequency Setting
Total

Responses

Mean Response

Time (s)
S.D. 95% C.I.

Slow

10 Req/sec

ACE 1000/1000 0.0295714 0.002653 0.0294-0.0297

PLC 1000/1000 0.0405504 0.001297 0.0405-0.0406

PLC Break

22.47 Req/sec

ACE 1000/1000 0.0381775 0.003843 0.0379-0.0384

PLC 989/1000 0.0562203 0.136387 0.0477-0.0647

PLC (N.O.) 984/1000 0.0509099 0.016059 0.0499-0.0519

two-sided t-test shows that the means are different with a p-value of 2.2x10−16. Thus, the

average response time of the ACE is statistically faster than that of the PLC.

Figure 5.6 shows a scatter plot of the response times from each trial. For visualization

purposes, the scatter plots in Figure 5.6 and Figure 5.7 (discussed later) show the data

with first order outliers removed. It is easy to see that, at the Slow frequency, the response

times of the PLC are slower than those of the ACE.
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Figure 5.6: Device Response Times at the Slow Level.
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5.2.2 PLC Break.

This section discusses the performance of the devices at the PLC Break level. This is

the level at which the PLC just begins failing to respond to requests. Table 5.3 shows that,

again, the ACE responds faster than the PLC. On average, the ACE responds 1.47 times

faster than the PLC. In addition, a two-sided t-test for the means at the PLC Break level

also shows that the means are different with a p-value of 2.2x10−16. Figure 5.7 shows the

response times for each device with the first order outliers removed.

From these graphs, we can see that a number of outliers still exist for the PLC

response times. Because this frequency is the breaking point of the PLC, outliers are

likely to occur. The PLC only responded to 989 of the 1000 requests. This means that the

requests timed out for the other 11 attempts. It is reasonable to have variability in the

responses. Because all data points are valid, an analysis of all response times must be

included. Excluding the extreme outliers, though, allows for a more expressive view of the

means. The final line of Table 5.3 shows a summary of the PLC response times without

the outliers. The standard deviation is smaller, but it is still much larger than the standard

deviation of the ACE response times. Additionally, even though the average of the

no-outlier data is lower, the 95% CI still does not overlap that of the ACE response times.

Figure 5.8 shows another view of the response times. In this figure, the graph of the

ACE response times still shows the data with only the first order outliers removed. The

PLC graph, on the other hand, shows the data with all outliers removed that have a p-value

of less than 0.05. These graphs show that there is still a relatively larger spread amongst

the PLC data. It is now easier to see that even the fastest response times of the PLC are

still slower than those of the ACE.
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Figure 5.7: Device Response Times at the PLC Break Level
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Figure 5.8: Device Response Times at the PLC Break Level. All outliers for the PLC
response times have been removed.
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5.2.3 Adding an Artificial Delay.

The results above show that the response times of the ACE are faster than those of the

PLC. This difference could be lessened by adding an artificial delay to the ACE responses.

Pilot studies suggested that a delay of 1.5 ms could be suitable to lessen the gap between

the ACE and PLC response times. Initial considerations for maintaining autonomy and

minimizing complexity concluded that the static delay is potentially an acceptable

solution. Table 5.4 shows the response times of the ACE without the delay, alongside

those with an added 1.5 ms delay. The delay does help in decreasing the gap between

response times.

Table 5.4: Comparison of Response Times for the ACE With the Delay and Without the
Delay

Device
Request

Frequency

Response

(Seconds)
PLC

Average

Deviation from

PLC Average
Mean S.D.

ACE
Slow

0.029571
0.002653 0.040550

0.0110 1.37 x Faster

ACE

w/delay
0.031071 0.0095 1.31 x Faster

ACE
PLC Break

0.038178
0.003843 0.056220

0.0180 1.47 x Faster

ACE

w/delay
0.039678 0.0165 1.42 x Faster

A more accurate delay could be created by learning response time information during

the configuration process. Part of the configuration process includes sending GET requests

to each the PLC. Packets captured from this interaction with the PLC are analyzed. Using

this traffic configuration tool could determine the response times for each page request.

The average response times could be added to the ACE as an artificial delay. This could be
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a static delay, like the one used in this study. It could also be a varying delay withing a

range near the PLC average. Because the PLC response times have a large amount of

variance, adding a variable delay, would likely create more realistic response times.

5.2.4 Comparison to Gumtstix MCE Research.

This section provides comparative results of the Gumstix MCE experiments to those

of the ACE. Table 5.5 shows a summary of the averages from each study. The lines

labeled MCE PC are the results of the MCE running on an Ubuntu 2.6.35 PC [Jar13]. The

average PLC times from the MCE study are also from a Koyo DirectLogic PLC. Both the

ACE and MCE use Python’s web server library as the base for the emulator. It is

important to take into consideration the tests of the MCE and the ACE were run in

different testing environments. In addition, the PLC Break frequency that was derived for

the MCE research was 27.49 requests/second. The PLC Break frequency in this research

is 22.47 requests/second.

For the Slow frequency, the average response time of the MCE is 13.4 times faster

than its respective PLC average. The ACE is 1.3 times faster than the PLC average in this

research. The average MCE response time at the PLC Break frequency is 38.4 times faster

than the PLC average. The average time of the ACE is 1.4 times faster. In addition, the

standard deviation of the MCE response time is smaller than that of the ACE at both

frequency results.
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Table 5.5: Comparison of Response Times for the ACE and the Gumstix MCE [Jar13]

Device
Request

Frequency

Total

Responses

Response

(seconds)
PLC

Average

Deviation from

PLC Average
Mean S.D.

MCE

PC Slow
1000 0.002817 6.26e-4 0.037685 0.0349 13.4 x Faster

ACE 1000 0.031071 0.002653 0.040550 0.0095 1.3 x Faster

MCE

PC PLC Break
1000 0.002449 6.58e-4 0.093950 0.0915 38.4 x Faster

ACE 1000 0.039678 0.003843 0.0562203 0.0165 1.4 x Faster

5.3 Configuration Time

This research creates a standard configuration time for the ACE. This metric is not

compared to any baseline. Also note that the configuration time is calculated in only one

computing environment. Changes in processor speed and memory could greatly affect the

runtime. To determine an average, the ACE is configured 25 times. The total run time of

all configuration programs is recorded for each repetition. The average configuration time

for the ACE is 9.8 seconds with a standard deviation of 0.659 seconds. A histogram of the

configuration times is shown in Figure 5.9.

This study is 95% confident that the average configuration time is between 9.54 and

10.06 seconds. This confidence interval is under the five minute threshold value. An

average time of 9.8 seconds is acceptable for the intended implementations of the ECT.

This is, also, within reason for the amount of work accomplished by the tool.

5.4 Summary

This chapter presents the results of the ECT experiments. Testing of the response

accuracy shows that the ACE matches the PLC across 97.79% of the packets within the
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Figure 5.9: Histogram of the Configuration Time of the ACE Across 25 Replications

response. While this is less than 100%, it shows that a high level of accuracy can be

achieved, even with an automated process. Measurements of response time accuracy

shows deviations from the PLC average, but the response times are an improvement from

the previous MCE research. The configuration time executed in 9.8 seconds on average.

The low execution time shows that the configuration process does not require large

computing resources. Finally, the configuration time allows for expansion of options and

protocols configured by the ECT.
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VI. Conclusions

It has been shown that critical infrastructure is at risk for network attacks. Being able

to successfully mitigate these attacks requires knowledge about the vulnerability in ICS

systems and the methods that attackers use to gain access. It is possible to use real PLCs

to gain this knowledge, but PLCs are expensive. For instance, in an education

environment, students may deploy real attacks in order to learn about PLC vulnerabilities.

Using real PLCs for that environment could result in costly damage to the devices.

Hand-configured emulators are costly because they require the time of a skilled

programmer to configure the emulator to each desired PLC. Automatic emulators offer a

solution because they are inexpensive, and if they become damaged, they are easily

restarted. An emulator, that can be automatically configured, not only eliminates the need

for a programmer, but it also allows for a quick configuration of PLCs that look like any

brand or type.

This research created a process for automatically configuring a device to emulate the

web protocols of a PLC. The process gathers information about a PLC based on its

response behavior and network settings. It then uses a generic web server that combines

response headers and web page contents to form a response that is in line with the PLC.

The resulting emulator shows promising accuracy, suggesting that the process is valid, and

automatically configuring PLC emulators is possible.

Because the web interface can be the first view an attacker receives of a PLC, an

accurate emulation of the web protocols is critical in creating a useful tool. Furthermore,

the methods in this research can be expanded to include configuration of the industrial

protocols. This would create an even more effective emulator. More discussion of future

research is included in Section 6.2.
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6.1 Research Conclusions

Response Accuracy. The response accuracy for this study is based on the number of

correct bytes in the response packets of the ACE. The accuracy in this study was 97.79%

across all tests. Because there is no variance, there are no confidence intervals for the

mean. One set of incorrect bytes, that greatly affected the accuracy percentage, were the

four bytes within the hardware address of the emulator. These bytes decreased the

accuracy by 1.4%. Correcting these bytes would bring the accuracy of the emulator closer

to the desired level. The presence of any incorrect bytes could be an area for

fingerprinting, so the accuracy of the ACE could still be improved. Despite the current

discrepancies, this study shows strong evidence, that it is possible to emulate the web

protocols of a PLC through an automated process.

Timing Accuracy. The second metric in the research is the timing accuracy of the

responses. The metric is determined by averaging the response times of the ACE for 1000

GET requests. The same requests are sent to the PLC, and the averages are compared. For

both the Slow and PLC Break frequencies, the ACE responds faster than the PLC. The

ACE responds 0.0095 seconds faster at the Slow frequency, and 0.0165 seconds faster at

the PLC Break frequency. If the ACE is connected to an industrial network, delays from

other networking devices could mask such a small difference.

Configuration Time. The configuration time metric is a measurement of the total

time to run the configuration process. The threshold for an acceptable time is based on the

intended implementations of the ACE. The implementations suggested by this study

include educational environments and industrial network deployment. Based on these

scenarios, a maximum configuration time of five minutes is considered acceptable.

Including the configuration time the ACE also provides a reference point for future

configuration processes. The results of this research show that the average configuration
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time is 9.8 seconds with a 95% confidence interval of 9.54-10.06 seconds. This confidence

interval is below the five minute threshold; therefore, it is considered acceptable.

6.2 Future Work

This section discusses recommendations for future research. Research opportunities

could mean expanding the functionality of the ACE, increasing its accuracy, or creating

more comprehensive methods of testing.

6.2.1 Adding Functionality.

Testing ECT on other PLCs. One aim of this research is to provide evidence that an

automatically configured emulator can behave like a PLC with minimal prior knowledge

of the PLC. The high level of accuracy of the ACE in this study shows that this is possible.

In addition, pilot studies were conducted using the ECT to configure the ACE for an

Allen-Bradley Logix5555. These studies suggest that an emulator of that device could be

created. Future research could use the ECT to create emulations of other brands of PLCs.

Testing the accuracy of those emulators would further confirm the validity of the ECT.

Multiple Emulators. Another avenue, for increasing functionality, is using the ECT

to create multiple emulators on a single device. Honeyd has shown the capability to do

this with other emulators [Hon12]. Therefore, it may be possible to incorporate the ECT

into Honeyd. Creating a network of virtual machines (VMs), each with their own ACE,

could be another option for investigation.

Emulation of Industrial Protocols. This research focused on emulating open web

protocols. To fully emulate a PLC, emulation of the PLC-specific protocols would need to

be included. The largest constraint of this research would be the proprietary nature of

many PLC protocols. One step in creating this emulation may be to devise an algorithm to

learn the protocol well enough that it can be emulated. At that point, the algorithm could

be added to the ECT. Creating a reverse engineering algorithm would not only aid in the

creation of an emulator, but could be used to find vulnerabilities in PLCs.
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6.2.2 Increasing Accuracy.

Many areas exist to make the ACE a more accurate emulation. One area is adding the

ability to make changes to values within the web interface. For the Koyo PLC, this

includes values such as the IP address of the PLC, the device name, and other settings.

The current state of the ACE allows a user to make changes, but those changes are not

properly updated across the entire web server. The Koyo propagates these changes

through scripting. A page that indicates that the change is successful appears on the

screen. Because this page only appears when a change has been submitted to a field, the

ECT does not see this page during configuration. When a change is submitted to the ACE,

it logs the change in a reference dictionary, but it does not display the completion page. It

does not properly route back to the index.html page, as the Koyo would. Future research

could create an algorithm for mimicking any scripting performed by the PLC. Because

each PLC changes values differently, this issue may not be as prominent for other brands.

6.2.3 Accuracy Testing.

The measurements of accuracy, for this research, is based only on the byte accuracy of

the response to the index.html page, and the timing of those responses. A more rigorous

testing method would allow researchers to see potential vectors for fingerprinting the

emulator. This would give researchers a list of faults that could potentially increase the

accuracy of the emulator. One option, for further accuracy testing, is putting the ACE on a

real network and allowing interaction with human users. This could be done with PLC

experts to see if they are able to detect the difference between the ACE and the real PLC.

Another option, would be to place the ACE on an Internet-facing network for outside

users to interact with. The users could give valuable input in determining the ACE’s

ability to deceive an attacker.
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Appendix A: Configuring the Emulator

The ECT has only been tested on an Ubuntu 13.10 virtual machine with 20GB of disk

space, and 1GB of memory. This setup should provide all necessary system requirements.

Any additional requirements are included in the generic emulator folder. These

requirements include the Python libraries used by the ECT, the configuration scripts, and

the generic web server.

To run the configuration process, open two terminals in the Ubuntu machine. In the

first terminal, run the following command within the generic emulator folder:

$sudo tcpdump -i eth0 -w settings.pcap

The tcpdump program captures the traffic between configuration machine and the

PLC. This traffic is saved to the settings.pcap file, which is parsed by the parse pcap.py

script. While tcpdump is running, start the configuration scripts. In the other terminal

window run this command:

$sudo python ./auto-wget.py

This command starts the auto-wget script. The auto-wget program also runs the

inputFinder script within the code. These scripts accomplish three tasks: (1) gather all

available pages from the web server, (2) send a GET request to each page, and (3) record

the PLC’s response to the GET request.

Stop tcpdump, and back in the second terminal where the auto-get command was

executed, run these commands:

$sudo python ./parse pcap.py settings.pcap

$cd web server

$sudo python ./webserver.py
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The parse pcap script looks through the settings.pcap file for a packet with the SYN

and ACK flags set. This packet contains the values for the PLC network configuration

options. parse pcap extracts these values and sends them the config emulator script. This

script changes the network configuration of the emulator VM, to match those values.

Finally the webserver.py command starts the ACE. The webserver.py program is a

Python based web server, with the functionality to reference other files in order to

formulate its responses to GET requests.
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Appendix B: Non-deterministic Fields

B.1 Non-deterministic Fields in Web Response

The information in this Appendix was created in the Gumstix MCE study [Jar13].

The Appendix is included in this paper for reference.
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Appendix C: Commands run by config emulator.sh

The following appendix lists the commands run by config emulator.sh that use values

from PLC traffic packets. The values are changed on the emulator virtual machine to

reflect the values that are on the PLC.

Setting Description Command

MTU

This is the maximum segment size (MSS)
plus 40 bytes for the TCP/IP header. The
MSS is the maximum amount of data that
can be put in a segment.

ifconfig mtu [value]

TCP Sack

TCP selective acknowledgment. This
allows the sender to specify whether
or not to tell the receiver which packets
have already been sent. Thus the
receiver can re-transmit lost packets.
[RFC 2018]

echo “[value]” >>/proc/sys/net/ipv4/tcp sack

TCP
Window
Scaling

This option allows windows larger than
65KB if it is turned on. [RFC 1323] echo “[value]” >>/proc/sys/net/ipv4/tcp window scaling

TCP
timestamp

This specifies whether or not to
calculate server uptime into the timestamp
value placed in the TCP options section. If
this option is turned on, it means “do
not use system uptime in calculation,”
otherwise use it. [RFC 1323]

echo “[value]” >>/proc/sys/net/ipv4/tcp timestamps

TTL
The number of hops allotted to a piece
of data. After the hops reach zero,
the data is discarded.

echo “[value]” >>/proc/sys/net/ipv4/ip default ttl
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